Théorème de Weierstrass

Théorème 1 (Weierstrass). L'ensemble des polynômes sur [a,b] est dense dans $(\mathcal{C}^0([a,b],\mathbb{R}), \|.\|_{\infty})$.

Démonstration.

Fixons $\varepsilon > 0, f \in E$ et $(\chi_n)_{n \in \mathbb{N}}$ une approximation de l'unité.

Étape 1 : Montrons que la suite $(f * \chi_n)$ converge uniformément vers f.

Comme f est à support compact, elle est uniformément continue par le théorème de Heine. Il existe donc $\delta > 0$ tel que, pour tous $x,y \in \mathbb{R}$, $|x-y| < \delta$ entraı̂ne $|f(x)-f(y)| < \varepsilon$. Par ailleurs, on peut choisir $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $\int_{|t| > \delta} \chi_n(t) \, dt < \varepsilon$. Alors, pour $n \geq N$, on a :

$$|(\chi_n * f)(x) - f(x)| = \left| \int_{\mathbb{R}} \chi_n(t) f(x - t) dt - f(x) \right|$$

$$= \left| \int_{\mathbb{R}} \chi_n(t) (f(x - t) - f(x)) dt \right|$$

$$\leqslant \int_{\mathbb{R}} \chi_n(t) |f(x - t) - f(x)| dt$$

$$\leqslant \int_{-\delta}^{\delta} \chi_n(t) |f(x - t) - f(x)| dt + \int_{|t| > \delta} \chi_n(t) |f(x - t) - f(x)| dt$$

$$\leqslant \varepsilon \int_{-\delta}^{\delta} \chi_n(t) dt + 2 ||f||_{\infty} \int_{|t| > \delta} \chi_n(t) dt$$

$$\leqslant \varepsilon \int_{\mathbb{R}} \chi_n(t) dt + 2\varepsilon ||f||_{\infty}$$

$$\leqslant (1 + 2 ||f||_{\infty})\varepsilon$$

Ainsi, $\|(\chi_n * f) - f\|_{\infty} < (1 + 2 \|f\|_{\infty})\varepsilon$, d'où la convergence uniforme.

Étape 2 : On suppose f à support dans $\left[-\frac{1}{2},\frac{1}{2}\right]$.

On considère, pour tout $n \in \mathbb{N}$, $a_n = \int_{-1}^{1} (1 - t^2)^n dt$, et P_n la fonction définie par :

$$P_n: \mid \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto \begin{cases} \frac{(1-t^2)^n}{a_n} & \text{si } |t| \leqslant 1 \\ 0 & \text{sinon} \end{cases}$$

On a que P_n est une approximation de l'unité. Montrons que P_n*f est un polynôme sur $\left[-\frac{1}{2},\frac{1}{2}\right]$. On a :

$$(P_n * f)(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} P_n(x - t) f(t) dt$$

Pour $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, on a ainsi $|x - t| \le 1$, et :

$$P_n(x-t) = \frac{(1-(x-t)^2)^n}{a_n} = \sum_{k=0}^{2n} q_k(t)x^k$$

avec q_k un polynôme. Ainsi :

$$(P_n * f)(x) = \sum_{k=0}^{2n} x^k \int_{-\frac{1}{2}}^{\frac{1}{2}} q_k(t) f(t) dt$$

Donc $P_n * f$ est bien un polynôme sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Étape 3 : Cas général.

Soit $f:[a,b] \to \mathbb{R}$ continue. On considère c < d dans \mathbb{R} tels que $[a,b] \subset]c,d[$. On prolonge f par :

- Une fonction affine sur [c, a], valant 0 en c et f(a) en a.
- Une fonction affine sur [b, d], valant f(b) en b et 0 en d.

On obtient ainsi une fonction continue à support dans [c,d]. On considère la fonction :

$$\varphi: \left| \begin{array}{ccc} \left[-\frac{1}{2}, \frac{1}{2}\right] & \longrightarrow & [c, d] \\ x & \longmapsto & (d-c)x + \frac{c+d}{2} \end{array} \right|$$

On obtient que $f \circ \varphi^{-1}$ est limite uniforme d'une suite de polynômes ψ_n par les étapes précédentes, donc f est limite uniforme de la suite de polynômes $\psi_n \circ \varphi$.

 $\textbf{Conclusion.} \ \ \text{Toute fonction réelle continue sur un compact peut être approchée uniformément par une suite polynômes.} \ \ \vartriangleleft$

Références

[Gou] Xavier Gourdon. Les Maths en Tête : Analyse. Ellipses